Abstract

Let M be a maximal subalgebra of a Lie algebra L and A/B a chief factor of L such that $B \subseteq M$ and $A \nsubseteq M$. We call the factor algebra $M \cap A/B$ a c-section of M. All such c-sections are isomorphic, and this concept is related those of c-ideals and ideal index previously introduced by the author. Properties of c-sections are studied and some new characterizations of solvable Lie algebras are obtained.

Mathematics Subject Classification 2000: 17B05, 17B20, 17B30, 17B50.

Key Words and Phrases: c-section, c-ideal, ideal index, primitive, solvable, nilpotent, nil, restricted Lie algebra.

1 Preliminary results

Throughout L will denote a finite-dimensional Lie algebra over a field F. We denote algebra direct sums by ‘\oplus’, whereas vector space direct sums will be denoted by ‘$\dot{+}$’. If B is a subalgebra of L we define B_L, the core (with respect to L) of B to be the largest ideal of L contained in B. In [9] we defined a subalgebra B of L to be a c-ideal of L if there is an ideal C of L such that $L = B + C$ and $B \cap C \subseteq B_L$.

Let M be a maximal subalgebra of L. We say that a chief factor C/D of L supplements M in L if $L = C + M$ and $B \subseteq C \cap M$; if $B = C \cap M$ we say that C/D complements M in L. In [10] we defined the ideal index of a maximal subalgebra M of L, denoted by $\eta(L : M)$, to be the well-defined dimension of a chief factor C/D where C is an ideal minimal with respect to supplementing M in L. Here we introduce a further concept which is related to the previous two.

Let M be a maximal subalgebra of L and let C/D be a chief factor of L with $D \subseteq M$ and $L = M + C$. Then $(M \cap C)/D$ is called a c-section of M in L. The analogous concept for groups was introduced by Wang and Shirong in [13] and studied further by Li and Shi in [3].

We say that L is primitive if it has a maximal subalgebra M with $M_L = 0$. First we show that all c-sections of M are isomorphic.

Lemma 1.1 For every maximal subalgebra M of L there is a unique c-section up to isomorphism.

Proof. Clearly c-sections exist. Let $(M \cap C)/D$ be a c-section of M in L, where C/D is a chief factor of L, $D \subseteq M$ and $L = M + C$. First we show that this c-section is isomorphic to one in which $D = M_L$. Clearly $D \subseteq M_L \cap C \subseteq C$, so either $M_L \cap C = C$ or $M_L \cap C = D$. If the former holds, then $C \subseteq M_L$, giving $L = M$, a contradiction. In the latter case put $E = C + M_L$. Then $E/M_L \cong C/D$ is a chief factor and $(M \cap E)/M_L$ is a c-section. Moreover,

\[
\frac{M \cap E}{M_L} = \frac{M_L + M \cap C}{M_L} \cong \frac{M \cap C}{M_L \cap C} = \frac{M \cap C}{D}.
\]

So suppose that $(M \cap C_1)/M_L$ and $(M \cap C_2)/M_L$ are two c-sections, where C_1/M_L, C_2/M_L are chief factors and $L = M + C_1 = M + C_2$. Then L/M_L is primitive and so either $C_1 = C_2$ or else $C_1/M_L \cong C_2/M_L$ and $C_1 \cap M = M_L = C_2 \cap M$, by [12, Theorem 1.1]. In the latter case both c-sections are trivial. □

Given a Lie algebra L with a maximal subalgebra M we define $Sec(M)$ to be the Lie algebra which is isomorphic to any c-section of M; we call the natural number $\eta^*(L : M) = \dim Sec(M)$ the c-index of M in L.

The relationship between c-ideals and c-sections, and between ideal index and c-index, for a maximal subalgebra M of L is given by the following lemma.

Lemma 1.2 Let M be a maximal subalgebra of a Lie algebra L. Then
(i) M is a c-ideal of L if and only if $\text{Sec}(M) = 0$; and

(ii) $\eta^*(L : M) = \eta(L : M) - \dim(L/M)$.

Proof.

(i) Suppose first that M is a c-ideal of L. Then there is an ideal C of L such that $L = M + C$ and $M \cap C \subseteq M_L$. Then $M \cap C = M_L \cap C$ is an ideal of L. Let K be an ideal of L with $M \cap C \subseteq K \subseteq C$. Then $K \nsubseteq M$, so $L = M + K$ and $M \cap C = M \cap K$. This yields that $\dim L = \dim M + \dim K - \dim(M \cap K) = \dim M + \dim C - \dim(M \cap C)$, so $K = C$ and $C/(M \cap C)$ is a chief factor of L. It follows that $\text{Sec}(M) = 0$.

The converse is clear.

(ii) Let C/D be a chief factor such that $L = M + C$ and C is minimal in the set of ideals supplementing M in L. Then $\eta(L : M) = \dim(C/D)$, by the definition of ideal index. Thus,

$$
\eta(L : M) = \dim(C/D) = \dim C - \dim D = \dim C - \dim C \cap M + \dim C \cap M - \dim D = \dim L - \dim M + \dim(C \cap M/D) = \dim(L/M) + \eta^*(L : M).
$$

Lemma 1.3 Let A/B be an abelian chief factor of L. Then any maximal subalgebra of L that supplements A/B must complement A/B.

Proof. Let M supplement A/B, so $L = A + M$ and $B \subseteq M$. Then $[L, M \cap A] = [A + M, M \cap A] \subseteq B + M \cap A = M \cap A$. So $M \cap A$ is an ideal of L and $M \cap A = B$. □

The following lemma will also be useful.

Lemma 1.4 Let $B \subseteq M \subseteq L$, where M is maximal in L and B is an ideal of L. Then $\text{Sec}(M) \cong \text{Sec}(M/B)$.

Proof. Clearly M/B is a maximal subalgebra of L/B. Let $(C/B)/(D/B)$ be a chief factor of L/B such that $D/B \subseteq M/B$ and $C/B + M/B = L/B$.
Then C/D is a chief factor of L such that $L = C + M$ and $D \subseteq M$. Hence $Sec(M) \cong C \cap M/D \cong Sec(M/B)$. □

In [12] it was shown that a primitive Lie algebra can be one of three types: it is said to be

1. **primitive of type 1** if it has a unique minimal ideal that is abelian;

2. **primitive of type 2** if it has a unique minimal ideal that is non-abelian;

3. **primitive of type 3** if it has precisely two distinct minimal ideals each of which is non-abelian.

If M is a maximal subalgebra of L, then L/M_L is clearly primitive; we say that M is of type i if L/M_L is primitive of type i for $i = 1, 2, 3$. Then we have the following result.

Lemma 1.5 Let L be a Lie algebra over a field F and let M be a maximal subalgebra of L.

(i) If M is of type 1 or 3 then $Sec(M) = 0$.

(ii) If F has characteristic zero and M is of type 2 then $Sec(M) \cong M/M_L$.

Proof.

(i) This follows from [12, Theorem 1.1 3(a),(c)].

(ii) Let A/B be a nonabelian chief factor that is supplemented by M, so $L = A + M$ and $B = A \cap M_L$. Then L/M_L is simple, by [12, Theorem 1.7 2], which implies that $L = A + M_L$. Hence

$$\frac{M}{M_L} = \frac{M \cap (A + M_L)}{M_L} = \frac{M \cap A + M_L}{M_L} \cong \frac{M \cap A}{M_L \cap A} = \frac{M \cap A}{B} = Sec(M).$$

□

2 Main results

First we can state Theorems 3.1, 3.2 and 3.3 of [9] in terms of c-sections as follows.

Theorem 2.1 Let L be a Lie algebra over a field F. Then
(i) every maximal subalgebra M of L has trivial c-section if and only if L is solvable; and

(ii) if F has characteristic zero, or is algebraically closed of characteristic greater than 5, then L has a maximal subalgebra with trivial c-section if and only if L is solvable.

Theorem 2.2 Let L be a Lie algebra over a field F of characteristic zero. Then $\operatorname{Sec}(M)$ is solvable for all maximal subalgebras M of L if and only if $L = R \dot{+} S$, where R is the (solvable) radical of L and S is a direct sum of simple algebras which are minimal non-abelian or isomorphic to $\mathfrak{sl}_2(F)$.

Proof. Suppose first that $\operatorname{Sec}(M)$ is solvable for all maximal subalgebras M of L, and let $L = R \dot{+} S$ be the Levi decomposition of L. Then $\operatorname{Sec}(M)$ is solvable for all maximal subalgebras M of S, by Lemma [14]. Let $S = S_1 \oplus \ldots \oplus S_n$, where S_i is simple for each $1 \leq i \leq n$. If M contains all S_i apart from S_j, then $\operatorname{Sec}(M) \cong M \cap S_j$, so every subalgebra of S_j is solvable. It follows from [3] Theorem 2.2 and the remarks following it] that S_j is minimal non-abelian or isomorphic to $\mathfrak{sl}_2(F)$ for each $1 \leq j \leq n$.

Suppose conversely that L has the claimed form and let M be a maximal subalgebra of L. Every chief factor of L is either abelian or simple, and so every c-section of M is either abelian or isomorphic to a proper subalgebra of one of the simple components of S. In either case $\operatorname{Sec}(M)$ is solvable. □

Corollary 2.3 Let L be a Lie algebra over a field F and suppose that every maximal subalgebra has c-index k. Then

(i) if $k > 0$, L must be semisimple.

Suppose further that F has characteristic zero. Then

(ii) every simple ideal of its Levi factor must have all of its maximal subalgebras of dimension k;

(iii) $k = 0$ if and only if L is solvable;

(iv) $k = 1$ if and only if L is a direct sum of non-isomorphic three-dimensional simple ideals and $\sqrt{F} \not\subseteq F$; and

(v) $k = 2$ if and only if L is a direct sum of non-isomorphic ideals each of which is a minimal non-abelian simple Lie algebra with all maximal subalgebras of dimension 2.
Proof.

(i) If L has non-trivial radical, it has an abelian chief factor which is supplemented, and hence complemented, by Lemma 1.3 so $k = 0$.

(ii) This is clear.

(iii) This is Theorem 2.1 (i).

(iv) Suppose that $k = 1$. Then L is semisimple and each simple component has all of its maximal subalgebras one dimensional, by (i) and (ii). It follows that they are three-dimensional simple and $\sqrt{F} \not\subseteq F$, by [11, Theorem 3.4]. If there are two that are isomorphic, say S and $\theta(S)$, where θ is an isomorphism, then the diagonal subalgebra $\{s + \theta(s) : s \in S\}$ is maximal in $S \oplus \theta(S)$. But this together with the simple components other than S and $\theta(S)$ gives a maximal subalgebra M of L with c-index 0 in L.

Conversely, suppose that L is a direct sum of non-isomorphic three-dimensional simple ideals, $S_1 \oplus \ldots \oplus S_n$, and $\sqrt{F} \not\subseteq F$. Let M be a maximal subalgebra of L with $S_i \not\subseteq M$ and $S_j \not\subseteq M$ for some $1 \leq i, j \leq n$ with $i \neq j$. Then $L = M + S_i = M + S_j$ which yields that $M \cap S_i$ and $M \cap S_j$ are ideals of L and hence are trivial. But then $S_i \cong L/M \cong S_j$, a contradiction. It follows that every maximal subalgebra contains all but one of the simple components and hence that $k = 1$.

(v) This is similar to (iv), noting that there are no three-dimensional simple Lie algebras with all maximal subalgebras two dimensional.

\square

Note that algebras as described in Corollary 2.3 do exist as the following example shows. This example was constructed by Gejn (see [2, Example 3.5]).

Example 2.1 Let L be the Lie algebra generated by the matrices

\[
\begin{align*}
f_1 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -E \\ 0 & E & 0 \end{pmatrix},
f_2 &= \begin{pmatrix} 0 & 0 & A \\ 0 & 0 & 0 \\ -E & 0 & 0 \end{pmatrix},
f_3 &= \begin{pmatrix} 0 & -A & 0 \\ E & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},
g_1 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -A \\ 0 & A & 0 \end{pmatrix},
g_2 &= \begin{pmatrix} 0 & 0 & 2E \\ 0 & 0 & 0 \\ -A & 0 & 0 \end{pmatrix},
g_3 &= \begin{pmatrix} 0 & -2E & 0 \\ A & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\end{align*}
\]
where $A = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$, $E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, with respect to the operation $[,]$, over the rational numbers \mathbb{Q}. Then L is simple nonabelian (see [2, Example 3.5]), and the maximal subalgebras are $\mathbb{Q} f_i + \mathbb{Q} g_i$ for $i = 1, 2, 3$.

Example 2.2 Gejn also goes on to construct simple minimal nonabelian Lie algebras over \mathbb{Q} of dimension $3k$ for $k \geq 1$ by putting

$$A = \begin{pmatrix} 0 & 0 & \ldots & 0 & 2 \\ 1 & 0 & \ldots & 0 & 0 \\ 0 & 1 & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & 0 \end{pmatrix},$$

E as the $k \times k$ identity matrix and 0 as the $k \times k$ zero matrix (see [2, Example 3.6]). It is straightforward to check that in these every maximal subalgebra has c-index k.

The following corollary is straightforward.

Corollary 2.4 Let $L = R + S$ be a Lie algebra over a field F of characteristic zero, where R is the radical and S is a Levi factor, and suppose that L has a maximal subalgebra with c-index k. Then

(i) if $k > 0$ then $S \neq 0$;

(ii) $k = 1$ if and only if S has a minimal ideal which is minimal non-abelian or isomorphic to $sl_2(F)$;

(iii) $k > 1$ if and only if S has a minimal ideal with a maximal subalgebra of dimension k.

Let $(L_p, [p], \iota)$ be any finite-dimensional p-envelope of L. If S is a subalgebra of L we denote by S_p the restricted subalgebra of L_p generated by $\iota(S)$. Then the (absolute) toral rank of S in L, $TR(S, L)$, is defined by

$$TR(S, L) = \max \{\dim(T) : T \text{ is a torus of } (S_p + Z(L_p))/Z(L_p)\}.$$}

This definition is independent of the p-envelope chosen (see [7]). We write $TR(L, L) = TR(L)$. A Lie algebra L is monolithic if it has a unique minimal ideal (the monolith of L). The Frattini ideal, $\phi(L)$, is the largest ideal contained in every maximal subalgebra of L. We put $L^{(0)} = L$, $L^{(n)} = [L^{(n-1)}, L^{(n-1)}]$ for $n \in \mathbb{N}$ and $L^{(\infty)} = \cap_{n=0}^{\infty} L^{(n)}$.

7
Theorem 2.5 Let L be a Lie algebra over an algebraically closed field F of characteristic $p > 0$. Then Sec(M) is nilpotent for every maximal subalgebra M of L if and only L is solvable.

Proof. Let L be a minimal non-solvable Lie algebra such that Sec(M) is nilpotent for every maximal subalgebra M of L, and let R be the (solvable) radical of L. If L is simple then every maximal subalgebra of L is nilpotent, and no such Lie algebra exists over an algebraically closed field. So L has a minimal ideal A, and L/A is solvable. If there are two distinct minimal ideals A_1 and A_2, then L/A_1 and L/A_2 are solvable, whence $L \cong L/(A_1 \cap A_2)$ is solvable, a contradiction. Hence L is monolithic with monolith A. If $A \subseteq R$ then again L would be solvable, so L is semisimple and $\phi(L) = 0$. Thus, there is a maximal subalgebra M of L such that $L = M + A$.

Put $C = M \cap A$ which is an ideal of M. If $ad a$ is nilpotent for all $a \in A$ then L is solvable, a contradiction. Hence there exists $a \in A$ such that $ad a$ is not nilpotent. Let $L = L_0 + L_1$ be the Fitting decomposition of L relative to $ad a$. Then $L_0 \neq L$ and $L_1 \subseteq A$, so that if P is a maximal subalgebra containing L_0, we have $L = A + P$ and $a \in A \cap P$. We can, therefore, assume that $C \neq 0$.

Then C is nilpotent and $L/A \cong M/C$ is solvable, whence M is solvable. Now $[M, N_A(C)] \subseteq N_A(C)$, so $M + N_A(C)$ is a subalgebra of L. But $L = M + N_A(C)$ implies that C is an ideal of L, from which $C = A$ and L is solvable, a contradiction. It follows that $M = M + N_A(C)$, and so $N_A(C) = M \cap A = C$, and C is a Cartan subalgebra of A. Now C_p is a Cartan subalgebra of A_p, by [14 Lemma], and so there is a maximal torus $T \subseteq A_p$ such that $C_p = C_{L_p}(T)$ (see [5]).

Let $A_0(T) + \sum_{i \in \mathbb{Z}_p} A_{i\alpha}$ be a 1-section with respect to T. Then every element of C acts nilpotently on L_0, the Fitting null-component relative to T, and thus so does every element of C_p. It follows that $L = L_0 + \sum_{i \in \mathbb{Z}_p} A_{i\alpha}$ so $L^{(\infty)} = A$ is simple with $TR(A) = 1$. We therefore have that

$$p \neq 2, \quad A \in \{sl_2(F), W(1 : 1), H(2 : 1)^{(1)}\} \text{ if } p > 3$$

and

$$A \in \{sl_2(F), psl_3(F)\} \text{ if } p = 3,$$

by [4] and [6]. But now, dim $A_{\alpha} = 1$ (by [11 Corollary 3.8] for all but $psl_3(F)$, and this is straightforward to check) and $M = L_0 \subset L_0 + A_\alpha \subset L$, a contradiction. It follows that L is solvable.

The converse is clear. □

A subalgebra U of L is nil if $ad u$ acts nilpotently on L for all $u \in U$. Notice that we cannot replace ‘nilpotent’ in Theorem 2.5 by ‘solvable’.
or ‘supersolvable’ and draw the same conclusion, as $sl_2(F)$ is a counter-example. However, we can prove the same result with ‘nilpotent’ replaced by the stronger condition ‘nil’ without any restrictions on the field F.

Theorem 2.6 Let L be a Lie algebra over any field F. Then $Sec(M)$ is nil for every maximal subalgebra M of L if and only if L is solvable.

Proof. Let L be a minimal non-solvable Lie algebra such that $Sec(M)$ is nil for every maximal subalgebra M of L. If L is simple then every maximal subalgebra of L is nil. It follows that every element of L is nil and L is nilpotent, by Engel’s Theorem. Hence no such Lie algebra exists. So, arguing as in paragraphs 1 and 2 of Theorem 2.5 above, L is monolithic with monolith A, L/A is solvable, and there is a maximal subalgebra M of L such that $L = M + A$ with an element $a \in M \cap A$ such that $ad(a)$ is not nilpotent. But this is a contradiction, since $A \cap M = Sec(M)$ is nil.

Once again, the converse is clear. □

Let $(L, [p])$ be a restricted Lie algebra. Recall that an element $x \in L$ is called p-nilpotent if there exists an $n \in \mathbb{N}$ such that $x^{[p]^n} = 0$. Then we have the following immediate corollary.

Corollary 2.7 Let L be a restricted Lie algebra over a field F of characteristic $p > 0$. Then $Sec(M)$ is p-nilpotent for every maximal subalgebra M of L if and only if L is solvable.

Proof. Simply note that that a p-nilpotent subalgebra is nil. □

References

9

